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Abstract-Applications are described of two estimation techniques to obtain final deflections and response
times of plane rectangular frames subjected to impulsive loading on the transverse (beam) member.
Deflections up to roughly one third the span (thirty thicknesses)" are estimated by the mode approximation
and deflection bounds techniques, treating the plastic rate dependence by means of homogeneous viscous
constitutive equations. Comparisons are made with recent test results, and the degree of agreement is
discussed in terms of the known error sources of the two techniques.

1. INTRODUCTION
The impulsively loaded plane frame considered here is assumed to exhibit strong plastic rate
sensitivity and to reacb large deflections. We shall describe applications of the mode ap~

proximation technique and of the deflection bound method to this type of structure. Experi­
ments intended to check on these methods are described in a companion paper{n The
comparison between predictions of the·estimation techniques and the test results is discussed in
order to assess the relative importance of the intrinsic errors of the methods, and those due to
further idealizations and approximations made in their application to tbis type of structure.

The two types of frames considered are shown in Fig. 1. Type (a) in Fig. l(a) has a
concentrated impulse applied to a small block at the midpoint of the beam (transverse) member,
while type (b) in Fig. l(b) has a distributed impulse applied over tbis member. These loads ate
idealized as impulsive (zero duration), imparting specified initial velocities with negligible initial
displacements. Symmetric deformations are expected, the main displacement magnitude being
the displacement at the midpoint C of the beam member. At large deflections such as indicated
in Fig. 2(b), a finite lateral displacement occurs at the top B of each column. The particular
frames studied here and in the related tests had lengths L, =5.625 in. in the case of the "type
(a)" frames, L, =6.00 in. for the type (b) frames, with L2 =8.00 in. in both cases. Two strongly
rate~sensitive metals, mild steel and commercially pure titanium were used. In these circum­
stances the large deflections have primarilyIOnematic effects, without requiring drastic changes
in the stress field; the response remains primarily flexural.

2. BASIC CONCEPTS AND EQUATIONS
The essential concepts of the two techniques will be outlined briefly. Further information on

the approaches may be found for the bound method in[2, 3} and for the extended mode
approximation technique in{3, 4}.

The deflection bound method for a structure of viscoplastic material, subjected to impulsive
pressures at t ~0 and thereafter unloaded, requires the solution for quasi~static deflections due
to a certain concentrated force P~: if the deflection is sought at point A of the structure
(located by appropriate coordinates XA) in direction n (a unit vector), P~ is applied at this point
and in this direction. If the force Pi. is such that it does work at least equal to the specified
initial kinetic energy of the structure, then the displacement on which it does work is an upper
bound on the same deflection quantity in the response to the given dynamic loading. If tf is the
time at which the plastic deformation is completed, the theorem requires the work of the force
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Fig. I. Frame types considered here and in experiments [I). Type (al has steel block at midpoint of
transverse member, type (b) has uniform transverse member.

Fig. 2. Notation for mode form solution.

P~ to be done in time If. (For a time-dependent material the work to reach specified final
strains depends on the time in which they are reached.)

In mathematical terms the bound theorem states that

(la)

where U~II is the final displacement at point A in direction D of the dynamically loaded
structure, reached at time If; and UXII the displacement at time tf due to the static force p~";

the inequality holds provided

(lb)

where Ko is the initial kinetic energy of the impulsively loaded structure and the r.h.s.
represents the work done by the force Pi. in the interval of time 0 EO I EO If; W(qjf) denotes
work per unit volume written as function of the terminal generalized strains qi'. j =.1, .. r. for
general~ed strain and stress states having r components.

As noted above. this work d~pends on the interval If. Generally it also depends on the path.
Le. on the sequence of strain states from the initial to the terminal. We have eliminated path
dependence by using concepts of minimum work paths [2. 3]. Wdenoting the work per unit
volume which is a minimum for given terminal strain. The total work is evaluated as

(Ie)

where f/J(Ojf) is a homogeneous function of terminal stresses Ojf, whose degree of homo-
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geneity is n +1. More generally, the function • furnishes constitutive equations relating stress
to strain rate states in a convenient form, from the property

(2)

where qi are strain rate components.
The "intrinsic error" of the deflection bound is positive: an upper bound is obtained. In this

statement the comparison is made between a computed quasistatic deflection according to a
certain mathematical model, and a deflection resulting from impulsive loading on the structure
represented by the same model. When· comparison is made instead with the final deftection of
an actual structure as opposed to a mathematical model, the idealizations and approximations
adopted in the calculation of uit may introduce further errors. Some of the idealizations are
indicated above; they will be discussed with others more fully in a later section. Obviously the
aim is to make the calculation in such a way that the incidental errors are minor compared to
the intrinsic ones. The need for comparisons with experiments rather than merely with
computer outputs is also obvious.

The essential concept of the mode technique is that of obtaining an approximation to the
actual response from a simpler solution which satisfies all the field equations (dynamics,
kinematics including boundary fixing conditions, and constitutive equations), but disagrees in
general with the imposed initial velocities. Such simpler solutions can be found under certain
conditions in modal form, with velocity field, for example, written as

(3)

where i = 1, 2, 3; T(t) is a scalar function of time t; and <Pi(X) is a vector~valued function of
space coordinates x. The initial velocities

(4)

where To = T(O), usually differ from the velocities specified at t = 0, namely

(5)

since the shape functions tPi(X) are properties of the structure. However the initial magnitude
To can be chosen optimally by taking[5]

(6)

where p is the mass density and the integral is over the volume V of the structure. This value of
To minimizes the initial magnitude of the following functional:

(7)

It has been shown[6] for a wide class of material behavior of essentially viscous type
(generalized strain rates written as functions of generalized stress), (and assuming small
deflections) that A(t) isa non-increasing function. which decreases whenever plastic flow
occurs and the two solutions do not have identical stresses or strain rates. Thus the actual
velocity field and that of the mode solution approach each other in this sense. With To chosen
according to eqn (6)" the two solutions may become identical after a certain interval. The final
major displacement computed from the mode solution is therefore usually much closer to that
of the structure u.n the initial mode amplitude is to the corresponding given initial velocity.

The final major deftection of the mode response· will be greater or less than that of the
structure whose initial velocity is the specified one, depending on whether the initial mode
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v~locity field is more or less concentrated than the given velocity distribution. This intrinsic
error evidently can be positive or negative. Here again the "error" refers to quantities
computed using a certain mathematical model to represent a structure. The calculation of the
mode response involves idealizations and approximations, and when the results are compared
with deflections and response times of a real structure, further errors may appear. These will be
discussed in a later section.

The mode method requires the integration of the equations of the structure, from the initial
mode form velocity field to the end of the motion. This integration presents no difficulty if the
equations allow the separated-variable form of eqn (3) to hold during the entire response. If
sman-deflection equations are not used, such "permanent" mode solutions do not exist. A
convenient way of performing the integration in these cases is by means of a sequence of
"instantaneous" mode form solutions [3, 4]. At finite deflections the solution can be put in the
form of eqn (3) if the deflection is regarded as instantaneously fixed and known. Thus the

(I)

instantaneous shape function cf>;(x) changes during the response and may be written as t/Jtx).
Successive "solutions" in this form are linked through equations of the form

At· .
T(t,,+I) =T(t,,) +"2 [T(t,,) + T(t"+I)]'

(8a)

-(8b)

This method is not exact, even though the field equations are instantaneously satisfied; the
mode solution has a smaller energy dissipation rate than the actual motion at the same level of
kinetic energy[7]. This method may be expected to lead to a response of longer duration and
larger deflections than the actual motion of the structure would be under the same starting
conditions, so that the approximation due to this device for carrying out the integration for
large deflections is therefore expected to be conservative.

Here we write the equations used in both the mode technique and the deflection bound
method; the dynamical equations for the latter are obtained by setting the accelerations equal to
zero.

The notation is indicated in Fig. 2(b). We use rectangular coordinates x, y with origin at the
base A of the left-hand column. Velocity components are shown in Fig. 2(b). Nondimensional
quantities are used, defined as follows

i
y=L'

t
(9a)x= L

1
' t=-

l'

ii W . l' aii l' oW (9b)u=- w=- u=-- w=--=
H' H' Hat' Hat

where i, y; i'; ii, ware coordinates, time, and displacements in physical units, H is thickness,
and l' =2L.V(p/uo) is a reference time, p being mass density and Uo being a stress property
obtained from tests on strain rate dependent plastic behavior, as defined more fully below. For
general stress and strain -states in a one-dimensional structure, relations between bending
moment, axial force and the corresponding strain rates are required. We take the viscoplastic
behavior to be expressible in the form

~= 1+ (~)II", E>0
Uo Eo

(10)

where. u, E are uniuial stress aDd plastic strain rate, respectively, corresponding (in general) to
a fixed level of plastic strain EP ; and Uo. Eo. n are experimental constants appropriate to that
level. For mild steel the pair u. E are more appropriately taken as lower yield stress and
corresponding strain rate. respectively; then Uo has the significance of yield stress atzero strain
rate. Equation (10) is capable of very good representation of observed dynamic plastic behavior
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for the metals with strong strain rate sensitivity, provided strain rate history effects are
negligible. Generalizations of eqn (l0) are easily written. e.g. [4.8J. These involve a yield
condition, plastic strain rates being zero for stress states inside a yield surface. We adopt a
simpler form derived from that of eqn (10), which is homogeneous and involves no yield
condition[9]. This "matched viscous" representation replaces eqn (10) by

where

0', = (~)I/'"
0'0 Eo

(11a)

with

and

1+ iJ lilt.. _ 0
"'- -lilt,

Vo

n' =vn, (lIb)

(lIe)

(lId)

where i is the strain rate at which the two expressions, eqns (10) and (Ita), are matched in the
sense of having the same stress and slope dO'ldi. In generalized forms, i is the appropriate
effective strain rate.

The following expressions are generalizations of eqn (11a) appropriate for general states of
stress in our frame:

where

m=~ JL{lj+ "p,n' sgn (i+ ,,)+ Ii- ,,1 lin' sgn (i -1i)}

s =~ JL{Ii+ Tjll/lt' sgn (i+ ,,)-li- ,,1 1
/

11
' sgn (i -1i)}

(12a)

(12b)

M
m=Mo'

N
s= No'

• II:1:=_
!> "Ko

(12c)

(12d)

M, N being physical bending moment and axial force, respectively and K, i being curvature rate
and axial strain rate respectively in physical terms. Although· derived from a sandwich beam
model [2-4J, the values for pure bending and extension are either exact or extremely close to the
correct values for a rectangular solid section. These constitutive equations are conservative in
the sense that for a given strain rate state the stress levels are less than those in the solid
section.

We next write the strain rate components in terms of velocity and displacement components
in the two members AB and BC, using dimensionless variables (see eqns 9 and 12 and Fig. 2):

L_ 1 'It
WIC=--WSC

a
(13a, b)

, 4 (Ll ., + ' " )"Be=; H"Be WScWsc

(Be)

(t3d)
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where a =4L.2ioT/H2=(8L.JiolH2)V(p/uo) and a prime denotes differentiation with respect to
y in AB and to x in BC; note that 0 s y s I, 0 s x s I. The expressions for axial strain rate in
eqns (Be, 13d) contain terms where the deflection curve appears through the rotation (slope), as
in the "von Karman equations" of buckling theory. They are second order correction terms,
valid for deflections of moderately small size compared to the span.

The equation of energy-dissipation rate can be written for both types of frame as

(14)

where k =G/2pbHL.. and WI = wsdl, t), WI = wsc(1, t) are velocity and acceleration of the
block of mass G. When applied to the frame with attached mass, L 1 is given the reduced value
5.625 in.; for the frame without attached mass, k =0 and L1 =6.00 in.

The equations of dynamics, end conditions, and equations of continuity consistent both with
the kinematic forms of eqns (13) and the dissipation-energy rate equation (14) are derived as the
Euler equations of the latter, the velocities and associated strain rates being treated as virtual
quantities. The dynamical equations are found to be

At

End conditions are:

mBC+4{Sscwac)' = wsc

4 LI I ••

H Ssc =Usc·

C, x = I: madl, t) =- kWsdl, t)

wadI, t) =wadI, t) =usc(l, t) = O.

(15a)

(l5b)

(l5c)

(l5d)

(l6a)

(l6b-d)

Equation (16) is recognized as the equation of motion of the attached block; k is put equal to
zero for the frame without attached mass.
At

(l7a-c)

At B, y = I, x =0; continuity conditions are found to be

mAB(I, t) =msdO, t); Z~ u.u(l, t) = wsdO, t)

m.u(l, t) +4sAB(I, t)u.u(l, t) -4 ;; ssdO, t) = 0

4~ SAB(I, t) +madI, t) +4ssdO, t)wadO, t) =O.

(l8a, b)

(l8c, d)

(l8e)

(l8f)
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We have made the assumption, in calculations made to date, that the deformations are
flexural, with unimportant effects due to lengthening or shortening of frame members. This is
reasonable in view of the proportions. Hence the simplifying assumption of inextensibility was
adopted, with 11 =0 in both members. The axial forces are then reactions, and eqns (l2c, d)
furnish relations between axial and transverse velocities:

., H,.,
UBC =- L

t
WBCWBC' (l9a, b)

The constitutive equations then reduce to those for pure bending:

, . II' .
mBC =P, ~cl II sgn ~BC' (l9a, b)

In the mode approximation technique we look for solutions in separated-variable form,
writing

(20a, b)

(2Oc, d)

where ~t =1 at x = I; thus w. =WBCO, t) is the transverse velocity at midpoint C (the major
velocity magnitude). With these forms substituted in the equations of dynamics equations (15)
and the kinematic relations equations (13), it may be seen that the system of equations can be
split into ordinary differential equations containing either space or time variables, provided the
rotation terms from the current deflection field are regarded as fixed. If these are treated as
known at some stage of the response, the resulting eigen-problem can be solved to furnish the
corresponding shape functions t/Jt and t/J2, and the current acceleration w* and velocity w*.
Details of the integration by an iterative scheme are given in the Appendix. The deflection
bound is determined by a closely related numerical scheme, also outlined in the Appendix.

The integration of the nondimensional equations, starting from an initial velocity field
w:~(x), can be completed once values are assigned of the parameters a, n, Lt/~, LtIH, as well
as of the initial velocity amplitude w:. (Note that p, and n' = vn are obtained from these and the
current strain rates.) The end of the motion occurs at time t' such that w*(t') =0, and the final
deflection components are W~t/Jh W~t/J2' The final deflection amplitude and response time can be
presented as

-f
~ =wL =Fl(W~, a, n, LtlH, L t/L2' k)

:"'*

!.L =Ij = F2(w:, a, n, LtIH, L1/~, k)
T

(2Ia)

(2Ib)

where we recall T =2L1y(P/Uo), a =(8Lt3EoIH~y(p/uo), k =G/2L1pbH.
Examples of plots of w~ and t' as functions of w: for various values of the material and

geometrical parameters are shown in Figs. 3 and 4. The decrease of velocity amplitude to zero
is illustrated in Fig. 5. The two sets of curves of Fig. 3 illustrates how the parameters a and n
affect the final deflection, the remaining parameters of eqn (21) being held fixed. The curves of
Fig. 4 indicate how the duration time is affected. Weak dependence on both a and n is evident.
For example, multiplying a by 0.25 or 0.01 reduces the deflection by only about 10% or 50%,
respectively. Figure 3(b) shows that dependence on n is similarly weak. The insensitivity to
these parameters can be understood from the form of the equations. For example, the energy
rate-dissipation equation based on the mode-form velocity field is

w* [i (t/Jt2 + t/Jl> dl + k] = - (~*) 1111'1 I, [loy + ell+(1/II~ + loy - ell+.(1I11~] dl (22)

where the line integrals extend over the half-frame ABC, and



22 P. S. SYMONDS and C. T. CHON

3010 20
w~

o ..-:::::---l__--'__-'-_

o

10

40

0=5
30

S- =488 n=7
w' H ..

a=550
20

10 20
w2

o .......,,::----!-__..L.-_

o

10

20

30

40

(0) (b)

Fig. 3. Finaldeftection as function of initial mode form velocity (both dimensionless); (a) showing
dependence on parameter a, (b) showing dependence on power n of strain rate behavior law.
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Fig. 4. Time of response as function of initial mode form velocity (both dimensionless); (a) showing
dependence on parameter a. (bl showing dependence on power n of strain rate behavior law.
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On Be:

L
dl = L~dY,

Here, as in all equations of the system, a appears only in the combination (w.!a)IIII', Since
n' = lin, where II depends on current strain rate (eqn llc) and is often approx, 2; and since n is
large (5 for steel or 9 for titanium), the weak dependence on a is evident. We obtain results for
a perfectly plastic material by putting p. =1, n'-.+oo; as expected, then the acceleration is
independent of velocity and the parameter a disappears.

This insensitivity to a and n is an advantage in applications. Once the integration has been
carried out for nominal values of the parameters, giving curves of w~ and If as function of w~

over a suitable range, these curves can be used for many particular cases of interest. For the
uniform frame two such curves are shown in Fig. 6 for "steel" and "titanium", and an
analogous pair of curves is shown in Fig. 7 for the frame with attached mass. An inverse
procedure is used to apply these to the data of a particular test. First, the initial velocity
matching formula equation (6) of the mode approximation is written (in terms of nondimen­
sional quantities). Then from the relation between measured impulse I in physical units and the
non-dimensional initial velocity w~, the impulse I corresponding to a particular w~ is obtained.
Thus we obtain w~!H and If = ij'T as functions of I. The results for the two types of frames are

(a) Frame with
attached mass

(23a, b)

(b) Frame with
uniform beam

(23c, d)
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Fig. 6. "Master response curves" of final deflection-thickness ratio as function of initial mode velocity
amplitude, for type (b) frames.
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Taking data for the two types of frame and two materials, final deflection ratios are shown in
Figs. 6 and 7 as functions of nondimensional mode velocity w£. From these using eqns (23b, d)
are obtained curves of deflection vs impulse in physical units. Examples of such curves are
given in Figs. 8-11, with points shown also from tests[I].

In computing the impulse I corresponding to a chosen value of w~ from eqns (23b, d), values
of b, H, p and Uo appropriate for a particular test series are used, and these are used also to
determine the appropriate value of the parameter a = (8LI3iolH2)'\/(p/uo). However in view of
the insensitivity of the curves for w~ vs w~ to a, it is evident that a curve for a nominal value
of a can be used for other cases. Thus the curves of Figs. 6 and 7 serve as "master response
curves" for frames of a certain type of material and geometrical configuration.

To illustrate, a nominal value of a for the steel frames tested[l] may be taken as 550,
corresponding to material and geometrical values in Table 1of[l]. In particular, Uo = 33,100 psi
was used, from strain rate data on the material of those tests. Thus for example, a final
deflection ratio w~ = w~/H =20 corresponds to a nondimensional initial mode velocity w~ =
18.0. Using eqns (23) with H =0.123 in., a final deflection of 2.46 in. is estimated to require a
uniformly distributed impulse 1= 0.75Ib-sec, as plotted in Fig. 10. Now suppose a frame of the
same dimensions but of higher strength steel with Uo = 90,000 psi is to be considered. The new a
would be 550Y(33.l/90) = 334, but the same "master curve" of Fig. 6 can be used, since the
change due to a 40% reduction in a is negligible, by Fig. 3(a). Hence the impulse on the
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of mode approximation technique, for steel frames of type (a).
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of mode approximation technique, for titanium frames of type (b).

stronger frame required to produce the same deflection can be estimated as 0.75Y(90/33.1) =
1.2Ib-sec.

This simple type of calculation was used in analyzing the tests [1] to estimate the effect of
strain hardening in the titanium frames. The values of uo, n and Eo depend on the plastic strain
at which (u, E) are observed in tests at nominally constant strain rate. At EP = 1 and i%, values
of Uo were determined as 35,000 and 38,000 psi, respectively. Values of total impulse for both
values are shown for the estimated deflection curves for titanium (Figs. 9 and 11). In most
applications one similarly wants to explore a range of values of various parameters, including
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various load distributions over the structure. It is seen that the present technique is particularly
efficient for such explorations and contrasts with the typical wholly numerical approach.

3. COMPARISONS WITH TEST RESULTS
As already noted, experimental results[l] are now available for checking the estimation

techniques. The basic concepts (minimum potential energy and the mode velocity matching
device of eqn (6) are not in doubt, but the magnitudes of the intrinsic errors in estimates of
deflections and response times are unknown. Unless these errors are reasonably small, and
unless the further errors involved in implementing the techniques are also reasonably small as
well as generally predictable as to sign, the methods will remain of uncertain meaning and
limited usefulness. Thus the experiments are crucial for assessing the relative importance of the
two classes of errors and for confirming or otherwise our expectations as to the incidental
sources of error.

The deflection upper bound curves plotted in Figs. 8-11 in every case lie above the test
points, indicating that the incidental errors in this calculation are either small or predominately
positive. However, for the mode technique the situation is not so clear. For the concentrated
impulse tests (frame type (a» the intrinsic error is negative, since w~ < w~ from eqn (23a); for
the uniform impulse tests (on frames of type (b» w~ > w~ from eqn (23c), and the intrinsic error
is positive. If all other errors were negligible, we would expect the tests points to lie above the
estimated curves (for finite deflections) in Figs. 8 and 9, and to fall below them in Figs. 10 and
11. No such consistent relations are discernible in these figures. In the case of the steel frames
with either concentrated or distributed loading the test points lie essentially on the estimated
curve (although for concentrated impulses they tend to be consistently higher at the larger
impulse magnitudes). For the titanium frames under concentrated impulses the test deflections
fall well below the estimated curves, although approaching them at the larger impulse magni­
tudes. Under distributed impulses the titanium frames showed final deflections agreeing quite
closely with the estimated curves. (For titanium two estimated deflection curves by the mode
method are drawn, for two values of (To; as already noted, these correspond to two choices of
strain level.) The fact that the experiments do not clearly show the intrinsic errors suggests that
they are masked by effects of the further idealizations and approximations made in applying the
mode technique. We next list these and consider them briefly.

(1) A "rigid-viscoplastic" theory was used: elastic deformations were neglected (elastic
moduli taken as infinite). Here we are considering strongly rate sensitive metals so that stress
levels are raised and elastic strains probably increased in importance. On the simplest basis, we
may suppose that the energy ratio R of initial kinetic energy to total elastic strain energy
capacity must exceed about 6 for an error of less than 15% in the permanent deflection; this
takes over a result[lO] derived from a one-degree-of-freedom model and seems conservative
for perfectly plastic behavior. The values of impulse required for R ;;:. 6 are indicated in Figs.
8-11. If the same results held for the present rate sensitive materials there would appear to be
some correlation between this (arbitrary) criterion for the neglect of elastic deformations and
the experimental discrepancies. In the one case where the criterion is not satisfied in some of
the tests, namely the concentrated impulse tests on titanium frames shown in Fig. 9, the test
points at the smaller impulse magnitudes fall considerably below the estimated deflection
curves, but approach them as the impulse is increased. Note that for this case the intrinsic error
is negative (the test points should lie above the estimated curve in the absence of other errors);
hence the effect of elastic deflections would be even larger than indicated.

As already noted, errors due to elastic effects may be larger when the material is strongly
rate sensitive than indicated by the criterion applied, as above, for perfectly plastic behavior.
The omission of elastic deformations makes for substantial simplification, but further basic
research is needed to determine what errors are likely to be caused by it. It should probably be
regarded here as a major suspect.

(2) The constitutive equations express plastic strain rates as explicit functions of stresses,
with implicit account of strain hardening through the experimental constants. If the arbitrarily
chosen plastic strain level is low (or if the lower yield stress is used rather than a fixed strain
level), equations of this type would underestimate strain hardening and hence lead to over·
estimates of deflections. However, as illustrated for the titanium frames, it is easy to deduce
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deflection estimates based on a larger magnitude of plastic strain, and thus to take account of
strain hardening.

(3) Strain rate history effects were neglected, the experimental constants being obtained
from tests at nominally constant strain rates. The influence of prior strain rate history has been
studied mainly by tests in which the strain rate is rapidly increased [11]. A few tests involving a
rapid decrease have been described [12]; these would be more directly relevant to the present
response histories, where the structure is set in motion in a very short time, after which the
strain rates decrease to small values, perhaps roughly monotonically. On the basis of various
hypotheses to account for observed history effects, in particular the use of plastic work as a
state variable[13] and dynamic recovery [14], one would expect strain rate history effects in the
present case to lead to positive errors, i.e. to cause the test specimens to deflect less than the'
estimated value. The data are quite limited, but there seems little reason to expect that such
errors would be important here.

(4) Constitutive equations of homogeneous viscous type (without yield condition) were used,
derived from inhomogeneous forms based directly on strain rate test data. The matching
formula used (eqns llc) is such that the stress levels are lower, at the same strain rate, than
those according to the more realistic forms. Hence over-estimates of deflections are again
expected. The errors due to this device have been very small in the examples worked to
date [3, 9]. Experience is limited, but there seems no reason to expect large errors in the present
cases.

(5) The deformation is assumed to remain flexural at large deflections, with axial forces
treated as reactions. Expressions for center-line strain rate in terms of transverse and axial
velocity components are of second order accuracy (product of rotation by rotation rate). Setting
the axial strain rate equal to zero furnishes relations between the velocity components,
involving the transverse deflection.

The errors due to the use of approximate strain expressions at finite displacements, and to
the assumption of zero net center-line strain rate are difficult to assess as to magnitude or sign.
The second order terms are those widely used in approximate theories of buckling, but are
clearly valid only in a range of "moderately large" deflections. At final deflections approaching
a third of the span, this representation is questionable. The treatment of axial forces as
reactions which do not contribute to the energy dissipation rate implies a certain over-estimate
of local strength. However it does not seem possible from this to argue how the final deflections
will be affected. Intuitively we feel that the errors due to these aspects are not serious ones, but
further investigation is necessary.

(6) The pressure pulse is idealized as "impulsive", delivering finite impulse in vanishingly
small time. It is well known that this idealization leads to over-estimates of major
deflections[15] when applied to rigid-perfectly plastic structures using small deflection equa­
tions. The error in the over-estimate in those cases can be shown to be given approximately by
the ratio of the pulse duration to the duration of motion of the structure. These results certainly
do not apply exactly to problems where visco-plastic and large deflection effects are important.
However in the present problems the pulse duration is very short compared to the response
time of the structure (roughly 10 JLsec compared to 10 msec), and the resulting error is believed
to be positive but of minor importance.

(7) The integration technique used to obtain final deflections of the structure with initial
mode form velocity employed "instantaneous mode" solutions at a sequence of times, each
such solution corresponding to the current deflection field. They are linked by proper differen­
tial relations only at one point of the structure, where the major velocity and deflection
magnitudes occur. Hence although current field equations are satisfied, some continuity
conditions are disregarded. Extremal theorems are available for the small-small
equations [7, 16]. These can be applied to the current state and show that the mode form
velocity field renders the energy dissipation rate an extremum among all kinematically ad­
missible fields with the same kinetic energy. Here the extremum is a minimum, and the theorem
characterizes the mode form solution as minimizing the rate of decrease of kinetic energy, for a
fixed level of kinetic energy. The error in using this technique is therefore inferred to be
positive.

(8) Apart from the basic approximation in treating the actual motion as a sequence of
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instantaneous modes, the determination of current mode shapes and accelerations involves
solving a nonlinear eigenproblem by numerical means. This was done by an iterative scheme, as
outlined in the Appendix. The numerical scheme made use of a subdivision of the column and
half-span into 100 elements. It furnishes an essentially exact solution at low cost. No difficulties
with convergence were met at any deflection magnitudes, and it is believed that negligible errors
are introduced in this part of the response calculation.

The simplifications discussed above are involved in both the deflection bound and the mode
technique, with the exception of (7) which obviously refers only to the latter approach. It may
be noted that in the numerical evaluation of the deflection bound, the iterative scheme used for
determining the deflected shape under static loading has common ground with that used in the
numerical solution of the eigen-problem of the extended mode technique.

It is seen that the errors that can be identified with the idealizations and approximations as
listed are mainly positive, i.e. such as to cause too large a deftection. The exceptional cases are
items (5) and (8), where no statements on the sign of the error seem tenable. In some cases, for
example the neglect of elastic deformation and of strain rate history effects, the arguments are
somewhat conjectural. This seems unavoidable at the present stage.

The comparison of test results with the large deftection bounds indicates that the method of
calculation of the bounds is satisfactory. However, their comparison with large deflections
predicted by the mode technique shows inconsistencies. In the tests with uniform impulse
where the intrinsic error is positive, as are most of the other errors, the estimated deftection
curve should lie distinctly above the test points; the actual test points lie essentially on the
curves (Figs. 10 and 11). In the tests with concentrated impulse, the intrinsic error is negative.
This is shown clearly by the results for steel frames in Fig. 8, which suggests that the other
errors are small by comparison. However, the results for the titanium frames in Fig. 9 are then
anomalous, since to explain them the incidental errors must be large. Here perhaps the
influence of elastic deformations is more important as indicated by the energy ratio criterion.

Test results are given in[l] for measures of response time, and for the inward deflection at
the top of each column; this secondary deflection is zero in a "small-deflection" theory. The
present theory gives quite good agreement in both cases.

In conclusion, the present work has illustrated the application to large deftections of an
impulsively loaded viscoplastic structure of bound and mode estimation techniques. The
efficiency of both techniques compared to purely numerical approaches has been emphasized.
Comparisons with fairly comprehensive experimental results[l] have validated the deflection
bound calculation, but have shown up inconsistencies in the estimates of final deflections by the
extended mode technique. These demonstrate the need for further study of the approximations
made in implementing this method. Despite this, it is worth emphasizing that the estimated
deflections by the extended mode method in most cases agree extremely well with the final
deflections observed in the tests. In the one test series where the discrepancies are large (Fig.
9), the estimates are conservative (actual permanent deflections are smaller); these occur in
circumstances of relatively small final deflections where elastic deflections are more important.
Hence there seems no doubt that practical use can be made of this approach, with normal
caution.
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APPENDIX
The iterative scheme used to determine the instantaneous mode at each time stage in the mode technique is essentially

the same as that used in the solution for finite deftections of a circular plate (4). It is noteworthy that the deftection function
giving the deftection bound can be obtained by the same iteration scheme. We shall sketch briefty how the equations of the
two problems can be put in analogous form, omitting most of the details.

Equations only for the transverse member BC will be written. for brevity. We look first at the mode technique. When
the modal forms of eqns (20) are used, the dimensionless bending moment in the transverse member BC can be written as

(. )".'
m=IJo :* 1- IPrI"·· sgn( - 4J'\).

Equations (l9b), (l5d) and (l5b) can be integrated with respect to x and put in the following forms:

(AI)

(l9b)

(l5d)

'/"_ H w'./,''1'2- - '1'1L,

( . )".' [f.%]IJo :* 11- 4Jrl"·· sgn(-4Jj))' +4sw' = Iii* 0 411 dx +A .

(A2)

(A3)

(A4)

Here So and A are constants and the prime denotes differentiation with respect to x, position in member BC measured from
B. (All quantities refer to this member, but subscripts are omitted.) Similar equations can be written for member AB, and
the boundary conditions include fixing at A and C, continuity at B, and the normalizing condition 41. = I at C. Mter use of
eqn (A3), eqn (A4) can be written as

where

(A5)

Integrating eqn (A2), we obtain

412 =- ~ [1' w'4Ji dx - f w'4J; dxJ (A6)

At any stage of the response the slope function w'(x) can be estimated from the field at a preceding stage together with
the velocity and acceleration fields at that stage. Admissible shape functions 4J.(x) in BC and 4I2(Y1 in AB can also be
guessed, satisfying the stated conditions at A, Band C; the functions for the preceding stage may be used. except at t =O.
Equation (A6) then furnishes 4I2(x) in BC, apart from integration constants. With use of the analogous equations for AB
and the fixing, continuity, and normalization conditions, all of the integration constants can be determined, and new shape
functions obtained. From each set of functions the quantity A (eqn AS) can be computed from the energy rate-dissipation
equation (14), which takes the form

(A7)
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Cycles of iteration may be terminated when the magnitude A reaches a steady value. From the final values, the velocity
and displacement fields can be written, and approximate functions for a subsequent instant obtained.

At the start, w' '" 0 and w~ is chosen arbitrarily, with guessed admissible functions th(Y) and l/!I(X) in AB and BC,
respectively. The response terminates at w.(tf) '" 0, final deflections being obtained by interpolation when w. first becomes
negative.

The deflection bound requires only one determination of shape functions over the frame, rather than functions at a
sequence of times during the response as in the mode technique. To obtain an upper bound on the final deflection of the
midpoint C of the frame, a force P is applied at this point. If the work done quasi-statically by this force in time tf is not
less than Ko• where If is the actual response time and Ko the given initial kinetic energy. then the deflection corresponding
to this force is an upper bound on the same component of deflection resulting from the given initial velocities.

Use of minimum work paths to fixed final strains at time tf [2, 3) for the material behavior represented by eqns (II, 12)
enables us to write moment-curvature relations

where K f and Mf are curvature and moment at time tf , respectively. Nondimensional stresses may be defined as

_ [t] lin' n' Mf _ [t] lin' n' Nf
m'" ~ ---' s= ~ ---

T n'+ I Mo• T n' + I No

(AS)

(A9)

where T'" 2L ly(p/uo) is the reference time used also in the mode method. The equation of equilibrium for the beam
member BC with a concentrated force P at L" written as a delta function, is

P
M" +(Nw)' '" -'2 6(x - L I ). (AIO)

This may be integrated once, and with nondimensional variables as in eqns (9) and (A9) the four equations for this member
can be written as

where

1ii'+4sw'", jj

IKf Illn
' I I Illn'Iii '" /-I. KoT sgn K

f = /-I - '2 w" sgn (- w")

s= C1 "'const.

(
I )lln LIP d SL 3· • I pi / 2P '" ~ 2M

o
' an a'" 1 fov ( 0'0) H .

(Alia)

(Allb)

(AIle)

(Alld)

The analogous equations for AC, and the boundary and continuity equations, are omitted for brevity. The work-kinetic
energy condition eqn (Ib) takes the form

Ko H(/)lIn'[i l llii ln'+1 L2illlii/n'+I]-,,;;2j.£a- ~ - dx+- - dy.
Mo L j T 0 /-I L j 0 /-I

(AI2)

In these equations, the response time If appears explicitly only in eqn (A12), because of the definitions of Iii and p. The
inequality shows that tf' which is unknown, may be replaced by an upper bound It We shall not attempt to derive an exact
upper bound. Note that If appears only as t yn', where n' is large (e.g. 10), so results are insensitive to tf. For small
deflections and rigid-perfectly plastic bebavior, upper bounds on the response time for the present frame problems can be
obtained by Lee's method [17] and written as

t" '" .,iiLI
2
Vo

f 'f 4Mo
(AB)

where 'I '" 2ky(I +1/3k) for type (a)frames (attached mass and concentrated impulse) and 'I '" 2/y3 for type (b)frames.
The elect offulite .lIectionsis to lenathen, while that of strain rate sensitivity is to shorten tbe rllsponse time. Hence
while tbe expressions for tf" are not exact for our conditions, tbey are probably more than adequate.

It is convenient to write the defteCtion field in the form

w'" LlIPi(x) in BC; w'" DlMy) in AB

u'" LlIh{x) in BC; u'" Dt/Iz(y) in AB

(AI4a)

(AI4b)

where D is the dimensionless displacement at the midpoint C of the beam member. An iteration scheme is started by
giving D an arbitrary value, e,g. D'" 20, and assuming numerical functions I/I,(x) in BC and ~y) in AB. Equations such as
eqn (Alld) then furnish the corresponding axial components I/I,(x} in BC and I/II(Y) in AB. The equations of equilibrium'
(e.g. eqn AlIa), together with the moment-curvature equations (e.g. eqn AlIb), can now be written entirely in terms of the
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(AI5a)

transverse shape functions IMx) and .p,(y) and their derivatives, so tllat from starting fUhctions new functions are obtained
by quadratures, with constants of integration which must be found from the boundary and continuity equations. The forms
of the equations are identical with those in the mode method, with different meaning of the constants.

The experiments with which we have made compariSons involve direct measurements of the total impulse (fl applied to
the frame. Thus for the two frame types

I ,12 P
(a) 1== GVo, Ko= 2GVo' =2G .. 4kpbHL,

(AISb)

Using these and the expressions for the upper bound on response time, eqn (Al3), we have relations between impulse and
midpoint deflection ratio D = w/fH as follows

(
[2 )1+(112"" H (16kHIY)I1I2>t·\

Type (a): kb1H3L,fXTo == 2~ L, D 1I1L j(X2 "'!,,~(x), .p~(y}J

with 1/ == 2ky(l + lf3k), k'" GJ2L,pbH

(
p ),+tt/2/t') H (12HD2)tt/2/t"

Type (b): "iHJL,fXTo ""2~ L, D L
l
et2 1/4"r(xj, ~t<y)J

where (for both types)

(AI6a)

(Al6bj

(At6c)

Suitable values of p. "" uOluo and 11 =n'ln are obtained from the initial strain rates by means of eqn (Ill. The initial
mode form velocity field, with magnitude w: derived from given initial velocity or impulse values through the mode
matching technique of eqn (6), may be used with 4l(x) and 4l(Y) determined as outlined above. This field gives initial
maximum curvature rates and strain rates which, of course, are not the actual initial strain rates, but are smoothed values
that are appropriate for present purposes.
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